
Implementation of JVM-based languages
support in IntelliJ IDEA

Ilya Sergey

Dept. of Software Engineering
Saint-Petersburg State University

JetBrains Inc.
ilya.sergey@jetbrains.com

Abstract. This paper describes several examples of usage of two lan-
guages, compilable to Java byte-code, namely, Scala and Groovy. We
consider some functional and dynamic language constructs they bring to
standard process of Java application development. For that purpose we
appeal to the language analysis and IDE development process as com-
prehensive examples demonstrating the benefits of Scala and Groovy
usage.

1 Introduction

Java programming language holds a palm of one of the most popular technologies
for developing various types of applications for different industries and areas.
Nevertheless in some situations it is insufficient of standard Java constructions
which forces us to produce a fair amount of boilerplate code. In this work we
will show how to use possibilities of interoperability between different languages
in a full production taking two JVM-based languages, Scala and Groovy, as an
example.

When implementing languages support in IDE, we deal with syntactic and
semantic analysis of tree-like structures. For these goals Scala provides such
useful language constructions as higher order, nested, parametric and structural
polymorphic functions which could be used to make parser code both shorter and
conciser. Haskell-style list comprehensions simplify creation of filters for semantic
elements of different kinds. Implicit conversions make the wrapper creation more
transparent and pattern matching helps pick elements with similar structure.

Groovy loses in performance-critical tasks but it perfectly suits for testing
purposes as it can expand classes functionality at runtime, that eliminates te-
dious Java reflection API usage. Another use case is simple generation of build
scripts and XML documents via elegant implementation of builder pattern.

In general, it would make sense to allow use of Scala and Groovy to make
existing Java applications code more elegant and maintainable. In opposite di-
rection Scala programs could take benefit using well-known Java legacy such as,
for example, numerous UI libraries.

2

2 Scala in IDE development

2.1 IDE development stages

Process of Integrated Development Environment creation bears a resemblance
to compiler development. It has the same stages such as lexical analysis, syntac-
tic analysis and at later time various semantic verifications, for instance, type
checking, to resolve as many semantic conflicts as possible. But from other side
of view, IDE as a program is much more exacting to performance of such analy-
sis’s. They must be more or less incremental, and they must not be broken after
first user’s error as many auto-generated compilers.

That why IntelliJ IDEA’s language API contains rich abstractions to make
process of development easier. Source files are represented by special tree-like
entity named Program Structure Interface (PSI). It is nothing but hierarchy of
wrappers around program tree nodes, received from parser. But PSI encapsulates
all logic related to analysis and modification of program structure, it serves
as intermediate level between text representation of a program document and
IDE logic, such as refactorings, for example. Despite all opportunities for plugin
development this API demands big amount of code, which could be decreased if
we have appropriate functional constructions.

We consider some of IntelliJ IDEA language API elements and try implement
them in functional style. For this we’ll take Scala Programming language [1] as
a magnificent tool to demonstrate some patterns.

2.2 Lexer’s look-ahead

One of the most important abstractions to create parser in IDEA is so-called
PsiBuilder, which is charged with lexer advances and creation of program tree
nodes. Suppose, we deal with with some LL(k)-grammar where k is known. Then
we would like to have method called lookAhead(PsiBuilder builder, int k)

which could give us next k tokens from input stream. In Java this code could
look as follows:

static TokenType[] lookAhead1(PsiBuilder builder, int k) {

Marker marker = builder.mark();

TokenType[] tokens = new TokenType[k];

for (int i = 0; i < k; i++) {

tokens[i] = builder.eof() ? null : builder.getTokenType();

builder.advanceLexer();

}

marker.rollbackTo();

return tokens;

}

Looks not so bad, but imagine we have to analyse these k tokens further. So
we’re facing the prospect of infinite checks of every token in our array. Just the
time to recall Scala’s high-order functions and pattern matching. Same code
written on Scala looks much better.

3

def lookAhead2(n: Int)(builder: PsiBuilder) = {

val marker = builder.mark

val tokens = for (i <- (1 to n) if !builder.eof

token <- builder.getTokenType) yield {

builder.advanceLexer

token

}

builder.rollbackTo

tokens

}

Infix expressions in Scala are nothing but method invocations. The (1 to

n) expression invokes implicit function to construct Iterable instance by two
integers. lookAhead2 function returns instance of scala.Seq which represents
sequence class and can be used in pattern matching1:

lookAhead2(3)(builder) match {

case Seq(VAR, ID, ASSIGN, _*) => Assignment(builder)

case Seq(NUMBER, _*) => NumLiteral(builder)

case Seq(CLASS, ID, _*) => ClassDefinition(builder)

case _ => throw new ParseError("Unknown token sequence")

}

In the last case we check any other variant using wildcard pattern which
matches any value. Sequence wildcard pattern * matches any number of ele-
ments within a sequence, including zero elements. We divided parameter set in
signature of lookAhead2 function into two clauses. It has been done to provide
possibility to curry our function by its last parameter.

Suppose all non-terminals in our grammar are represented by singleton object
of special kind and for some non-terminal we want to fix our k by some N . Then
we may use mix-in functionality and create more specific lookAheadN by making
our lookAhead2() function partially applied.

trait ParserNode3 {

def lookAhead3 = ParserUtils.lookAhead2(3) _

}

object CodeBlock extends ParseNode3 {

def apply(builder: PsiBuilder) = lookAhead3(builder) match {

// some cases

}

}

The final step will let us eliminate builder as an argument for lookAhead

function. For this purpose we will change CodeBlock from object to case class.
1 Notice, that type of lookAhead2 function is inferred from its right part. Type of

returned value must be specified explicitly only when there are recursive calls or
return-statements in the body of function.

4

case class CodeBlock(builder: PsiBuilder) extends ParseNode3 {

implicit def unit2Builder(u: Unit): PsiBuilder = builder

def parse = lookAhead3() match {

// some cases

}

}

We marked our parser node class with case modifier which let us avoid new

keyword before new instance declaration, but all parser’s work will be done now
by method parse. Here we defined auxiliary implicit function unit2Builder

which converts argument of Unit type to PsiBuilder, passed as constructor
argument. When we call lookAhead3 with parentheses, we pass an instance of
scala.Unit type to it as an argument, which is converted further implicitly by
unit2Builder to PsiBuilder instance. Of course, we could define new method,
for example def lookAhead4 = lookAhead3(builder) without any parameters.
But by agreement it would be better if all methods which have side effects like
our lookAhead4 will have non-empty parameter clause.

2.3 Implicit conversions and Pattern Matching

We have already looked at user-defined conversions, implemented by Scala im-
plicit functions. They found one more interesting application in our project,
concerned to Scala support in IntelliJ IDEA. We had to distinguish, which of
compiled .class-files were got from Scala traits, classes or objects to get their
variables and methods and work with them. Picking any .class-file from the
set of compiled files, we can deduce what kind of Scala entity it was compiled
from using some heuristics, related to auxiliary functions. In such code it would
be very pleasant not to process separately case, when some entity (trait, object
etc.) was received from .class-file or from source file. That’s why appropriate
classes appeared.

case class TypeDefinition(methods: Seq[Method], fields: Seq[Field])

case class ScObject(methods: Seq[Method], fields: Seq[Field])

extends TypeDefinition(methods, fields)

case class ScClass(methods: Seq[Method], fields: Seq[Field])

extends TypeDefinition(methods, fields)

case class ScTrait(methods: Seq[Method], fields: Seq[Field])

extends TypeDefinition(methods, fields)

implicit def cls2TypeDef(cls: ClsClass): TypeDefinition = {

//Logic to obtain appropriate representation

}

implicit def src2TypeDef(cls: SourceClass): TypeDefinition = {...}

Now if we need to work with ”pure“ TypeDefinition, not thinking about its
real entity, we may use simple pattern matching. Implicit conversion will do all

5

dirty work for us. For example, if we want process only class fields or object
methods we can write:

someEntity: TypeDefinition match {

case o@ScObject(m, _) => processObjectMethods(o, m)

case c@ScClass(_, f) => processClassFields(c, f)

case _ =>

}

We must specify type of someEntity explicitly before matching to invoke our
implicit conversions. @ symbol is used as in Haskell to bind our pattern with
named value. And, of course, wildcard patterns in case classes are also available.

2.4 Some words about higher order functions

Higher order function which are typical for functional programming proved to
be very handy to work with some syntactical construction in our Scala plugin
for IntelliJ IDEA. We have already made an acquaintance with pattern match-
ing and appropriate name binding. Suppose we want to get all subpatterns of
any pattern that bind any identifiers. For example the pattern below binds five
identifiers.

case t@(Node(n), s: String, List(_, l, ls @ _*)) => ...

So, we bound t as tuple, n as parameter of case class Node2, s of type String,
l as second element of some List and ls as sequence representing the tail of the
same list. In our IDE background we represent syntactic construct of such type
by appropriate class.

class ScPattern extends Node {

def subpatterns: Seq[ScPattern] = ...

def bindedName: String = ...

}

Now we can obtain all subpatterns of root pattern only by three lines of
code:

def subpatterns: Seq[ScPattern] = this ::

childrenOfType(classOf[ScPattern]).foldLeft(Nil,

(x, y) => x ++ y.subpatterns)

To get all bindings we have to filter this sequence.

def bindings = subpatterns.filter(_.bindedName != null)

In a word, we replaced standard recursive tree bypass by high-orderer func-
tion foldLeft of trait scala.Seq. To filter only those patterns which bind some
identifier we used method closure with placeholder syntax, using symbol in-
stead of single argument. Scala type inference system will determine its type as
type argument of appropriate instance scala.Seq, namely ScPattern. That’s
why invocation of bindedName of placeholder parameter is legal.
2 or appropriate extractor

6

2.5 Sequence comprehensions and filters

One of the most useful features of functional languages like Haskell is list compre-
hensions which could be used to filter some sequences and get new ones. Classical
example of list comprehension is the shortest quicksort implementation3.

def qsort[T <% Ordered[T]](l: List[T]): List[T] = l match {

case Nil => Nil

case x :: xs => qsort(for (e <- xs if e < x) yield e) :::

List(x) ::: qsort(for (e <- xs if e >= x) yield e)

}

We have to mention some important details in example above. Firstly, Nil is
an object that extends List[Nothing] and taking into consideration covariance
inheritance annotation and the fact that Nothing is placed at the bottom of
Scala’s type hierarchy, we may return it as instance of List, parametrized by
any type. Secondly, let’s look at that strange sign <%. It denotes visible bound
for implicit conversions that makes from given type T its ”ordered wrapper“.
<% is like type bound but it’s indicating, that qsort() function may be applied
only for arguments of such type T which can be implicitly converted to type
Ordered[T]. It applies to those types that are subtypest of trait Ordered and
has necessary methods <() and >=() to be compared with each other.

There are many situations where sequence comprehensions may be elegantly
replaced by filters or loops. But not in the case when we need to treat elements
of two or more sequence.

Let’s discuss such useful IDE feature as keyword completion. To make it
more smart we must analyse semantical context and choose only those keywords
that could appear in this context in correct code. It’s obvious, that in Java we
cannot suggest keyword interface after keyword double has been typed by user.
That’s why we build a set of probably contexts by editor’s caret position. Every
keyword is represented by semantic ”variant“, containg all information about
its significance. In common case we have to check all variants for application
for every one of built contexts. In those cases when some variant is applicable
to some context we have to add appropriate keyword to the set of keywords to
be suggested as variants for completion. On Scala we may describe this tangled
operation by for-comprehension.

val keywordsToSuggest = for (c <- buildContexts

v <- KeywordVariants

if v.isApplicable(c)) yield v.keyword

2.6 None object instead of null

That’s very common situation when some method returns null object instead
of expected value. That’s why we have to write endless sequences of checks for
3 Here we deal with lists, that’s why we can use ::: operator to concatenate resulting

sequences.

7

null. IntelliJ IDEA API provides two special kinds of Java method annota-
tions, namely @NotNull which allows not to check returning value for null, and
@Nullable annotation to make developer check returned value. Our modified
Java compiler checks written code to conform to these annotations. For example
non-checked result of @Nullable-marked method invocation produces a warning
message during compilation.

Developing our Scala plugin we found that it would be much more reason-
able to make methods returning values of some type T (and probably return-
ing null value) return value of type scala.Option[T]. Haskell adepts must
be familiar with this type, it’s nothing else but Haskell’s Maybe. In Scala type
scala.Option[T] has, as was expected, two subtypes.

case final class Some[+T] (x: T) extends Option[T]

case object None extends Option[Nothing]

That’s why we rejected unsafe method invocations followed by checking for
null value.

String dangerous() { ... }

if (dangerous() != null) {

String d = dangerous();

...

} else {

...

}

We replaced them by safe pattern matching on instances of scala.Option[T]
type.

def safe(): Option[String] = ...

match safe(){

case Some(x) => ... // use x

case None => ...

}

3 Testing with Groovy

Groovy is another object-oriented language compilable to Java byte-code. In
contrast to Java or Scala it is dynamic and has features similar to those in other
popular dynamic languages, such as Ruby, Python or Perl. Of course programs
written on Groovy are fully compatible with Java libraries. Furthermore using
mechanism of Java stub generation you may write cross-referenced program on
both languages - Java and Groovy and you don’t need to think about order of
compilation. Groovy-to-Java stubs had been implemented for the first time in
JetGroovy plugin for IntelliJ IDEA and after they were added as a feature to
Groovy compiler itself.

As it was said before, Groovy is not the most pertinent language for IDE de-
velopment because of its performance problems. They are related to big amount

8

of auxiliary method invocations to provide dynamic features at the base of JVM.
In spite of this fact many classical patterns of object-oriented programming look
much more simpler and expressive being written on Groovy. That’s why we used
Groovy to test our applications.

3.1 Test project creation and Builder pattern

Builder pattern is well-known conception to separate construction of a complex
object from its representation. There is important abstraction In IntelliJ IDEA
testing API named IdeaTestFixure. It encapsulates program logic related to
Project creation, adding to it references to Java SDK, user-defined libraries and
other settings. It’s necessary to reproduce the whole environment’s behaviour
and test some functionality like, for instance, name binding.

Groovy provides very elegant syntax to implement builder pattern. It’s based
on some principal moments. At first, you can pass arguments by name to some
methods of Groovy classes. In fact, this is java.util.Map as their first parameter.
Then all arguments, passed to this method by name, will be collected in this
map with those names as keys. After that they can be got by these names inside
method body. Secondly, no one restricts these arguments to be of any type. For
example, they may have type groovy.lang.Closure and involve some builder
logic. Now, to create test project we have to implement class ProjectBuilder.

class ProjectBuilder{

def myProject

def buildProject(Map args, Closure cl) {

if (args.name != null) myProject.name = args.name

// Other named arguments processing

cl.setDelegate this
cl.call()

myProject

}

def addModule(Map args, Closure cl) {...}

def addJdk(Map args) {...}

// other builder methods

}

It’s very important that in given parameter cl of type groovy.lang.Closure
of buildProject() method we replaced cl’s delegate by ProjectBuilder class
itself. Now we can invoke methods of this class from closure created outside of
it. So, to create test project we have to invoke buildProject() method in the
following way.

def builder = new ProjectBuilder()

def testProject = builder.buildProject(name: "TestProject",

type: "JavaProject") {

addModule(name: "TestModule") {

addLibrary(path: "/home/user/my_lib_path")

9

}

addJdk(path: "/home/user/jdk_home")

}

In example above we pass two named arguments, name and type, and one in-
stance of groovy.lang.Closure (code block in curly braces) into buildProject()
method. Of course other methods like addModule() can also take closures as ar-
guments. That’s why the whole creation procedure is nothing but several nested
closure invocations.

3.2 Null object and safe dereferencing

Let’s return again to the methods returning null value. In test we have no so in-
tense need to check every possible ”dangerous“ reference for null. For that cases
Groovy provides special safe dereferencing operator ”?.“. Usually it’s assumed,
that result of using the null value should semantically be equivalent to doing
nothing. Reference expression with safe dereferencing operator will not throw
java.lang.NullPointerException in case when referenced expression points to
null, but it will return null. The code below will print line ”null“.

String nullString = null
println nullString?.length()

Another way to avoid numerous null-checks before referencing fields or in-
voking methods of some object is to use itself in the condition of conditional
operator. This feature named ”Groovy truth“ consists in implicit casting of some
object values to boolean value true or false. For example non-empty collection
or string instance will be processed as true. The most part of objects references
will be casted to true value if they are non-null. Hence we can replace allchecks
by code like below.

if (nullString) {

println nullString.length()

}

3.3 Regular expressions and properties setting

Let’s imagine we have written a test for numerous settings of code formatter. It
would be more reasonable to place all of them into some file and read immediately
before test. But after reading them we must set up appropriate static fields of
CodeStyleSettings class. We could do it but numerous if-else constructions or
by switch operator if it would support switching by strings in Java. But it
does not. So, let’s use power of dynamic language Groovy. At first, place our
properties to be set up to some file.

<option>BRACE_STYLE=END_OF_LINE</option>

<option>FINALLY_ON_NEW_LINE=false</option>

[testdata]

10

After that in our test class declare regular expression pattern to match our
settings:

static OPTION_START = ’<option>’

static OPTION_END = ’</option>’

static PATTERN = /$OPTION_START\w+=(true|false|\d|\w+)$OPTION_END\n/

So, it’s time to get our properties from text.

testText.eachMatch(PATTERN) {match ->

List tokens = match[0].trim().

replace(OPTION_START, "").replace(OPTION_END, "").tokenize("=")

[property, value] = [tokens.get(0), tokens.get(1)]

setSettingsProperty(property, value)

}

According to Groovy 1.6 specification we can use assignments of list expres-
sions to assign multiple values simultaneously. It remained only to set appropri-
ate fields of CodeStyleSettings class.

def setSettingsProperty(property, value) {

if (value ==˜ /(true|false)/) {

mySettings."$property" = Boolean.parseBoolean(value)

} else if (value ==˜ /\d/) {

mySettings."$property" = Integer.parseInt(value)

} else {

mySettings."$property" = mySettings."${value.toString()}"

}

}

Here we use so-called GString with dollar sign inside to inject defined vari-
ables directly into string expression.

4 Conclusion

We presented an implementation of solution for some usual problems in IDE
development using Scala and Groovy languages to take advantage of their func-
tional or dynamic features correspondingly. The resulting code looks more el-
egant and readable. We used these languages in the process of development
language plugins for IntelliJ IDEA which was positioned at the beginning as
IDE only for Java language. But now with its plugins for Scala and Groovy
languages it becomes a powerful tool to develop properly big projects on all of
these languages concurrently.

References

1. M. Odersky, The Scala Language Specification, Version 2.7, May 5, 2008
2. B. Emir, M. Odersky, J. Williams, Matching Objects With Patterns, January 2007.

11

3. Developing Custom Language Plugins for IntelliJ IDEA, available at
http://www.jetbrains.com/idea/plugins/developing custom language plugins.html

4. Nullable How-To, available at http://www.jetbrains.com/idea/documentation/howto.html
5. D. Koenig, A. Glover, P. King, G. Laforge, J. Skeet, Groovy in Action, January,

2007, 696 pages
6. N. Ford,

”
Design patterns“ in dynamic languages

